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Batch effects in sex classification analyses

MethodsIntroduction

Results

Discussion

• Matching characteristics of training- and test-
sample (e.g. age range) are essential for
accurate model applications

• We observed batch effects in the models due to
the differences in the samples, but the spatial
patterns of highly classifying parcels were
consistent

à Males and females differ in the brain functional
organization as captured by resting-state
functional connectivity consistenly across
differently trained models
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Classification accuracies per model

• 1000Brains: N = 1000, age range: 21-85 (M = 61.18)
• eNKI: N = 190, age range: 20-83 (M = 46.02)
• GSP: N = 854, age range: 21-35 (M = 22.92)
• HCP: N = 878, age range 22-37 (M = 28.49)

• Parcelwise approach as in Weis et al. (2020, 5): 400 parcels
from the Schaefer Atlas (6); 36 parcels from the
Brainnetome Atlas (7)

• Support vector machine (SVM) classifier with 5 repetitions
of a 10-fold cross-validation was built using Julearn
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• Model trained on eNKI, GSP & HCP (N = 1922): M = 64.9% (53.0-71.3%), 
Model applied to 1000Brains: M = 58.0% (49.5-68.0%)

• Model trained on 1000Brains, GSP & HCP (N = 2732): M = 63.8% (53.0-70.5%),
Model applied to eNKI: M = 61.4% (50.0-72.6%)

• Model trained on 1000Brains, eNKI, HCP (N = 2068): M = 63.9% (52.8-71.7%),
Model applied to GSP: M = 57.3% (48.7-68.6%)

• Model trained on 1000Brains, eNKI, GSP (N = 2044): M = 61.5% (54.1-68.4%),
Model applied to HCP: M = 59.4% (48.8-69.9%)

• Within- and between sample predictions displayed similar spatial patterns in 
classification accuracies as assessed by spearman rank correlations

• Highly classifying parcels are consistenly located in areas of the cingulate cortex, 
temporal gyrus, Precuneus, parietal lobule and inferior frontal gyrus
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Figure 2. Frequencies of highly classying parcels across a) within- and b) between-sample predictions

Consistent highly classifying parcels

• Machine-learning analyses allow for the prediction
of phenotypes from neuroimaging data (e.g. sex of
a person)

• Which sample characteristics provide highest
model performance for within- but also between-
sample predictions?

• The present study adresses this question for sex
classification analyses based on the resting-state
functional connectivity

• 3 out of 4 datasets respectively were combined for
training a sex classification model and the final 
model was applied to the remaining dataset

• Do the different models provide differences in the
spatial pattern and total accuracies due to
differences in the samples à Batch effects?

• Which brain regions classify consistenly on a high 
level?
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• Within-sample predictions were higher for
those training samples that included the HCP 
dataset, possible due to the high imaging
quality of this dataest

• Within-sample predictions were not driven by
sample size, as the smallest dataset had the
highest mean classification accuracy

• Model application worked best on eNKI in 
achieving highest mean and maximum
classification accuracy whereas model
application to GSP provided lowest between-
sample prediction

• High accuracies of model application to eNKI were
likely driven by sample size or the representation
of age range of the application set

• Even if HCP has a comparative age range to GSP, 
the imaging quality of HCP in training may not be
representative enough for a highly classifying
model application to the GSP datasets, resulting in 
the lower model performance

• Even though we see differences in the models due 
to the differences in the samples, regions
belonging to the default mode network are
consistently the highest classifying parcels (5,8)
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